Applecross Senior High School

Name :___

Mathematics Method 3 Test 1, 2017

Time Allowed: 55 minutes.

Note: For both Section 1 and section 2, working out must be shown for full marks to be awarded.

Section 1: [/ 17 marks] Section 2: [/ 31 marks] Total: [/ 48 marks] = _____%

Section 1 : Calculator and Resource Free Time : 20 minutes

1. [3,2 = 5 marks]

Differentiate the following with respect to x.

a)
$$f(x) = \frac{-x}{x^2 + 1}$$
 { Express numerator in simplest form }

b)
$$y = (1-x)^3 (1 + \frac{2}{x})^2 \{ Apply the product rule but do not simplify \}$$

2. [2,2= 4 marks]

A particle moves in a straight line such that its velocity, v m/s, depends upon displacement , x m , from some fixed point O according to the rule v = 5x-4

a) Find an expression in terms of x for the acceleration of the particle.

b) Determine the displacement and the acceleration of the particle when v = 6m/s.

3. [8 marks]

The equation of the tangent to the curve $y = ax^3 - bx^2 + 2$ where x = -1 is y = 18x + c. The curve has a point of inflection when x = 1.

Find the values of a, b and c.

[Note: Working out must be shown]

Name :	Marks: ${31}$
--------	---------------

Section 2 : Calculator and Resource Assumed. Time Allowed : 35 minutes

Note: Show working for full marks to be awarded.

1. [2,2=4 marks]

A company produces n items of a certain product. The cost function C is given by $C(n) = 1200 + 5n^{1/3}$ Each item sells for 52.

Find

a) An expression for the marginal profit P (n)

b) A value for P (64) and comment on its meaning.

- 2. [2,4,4 = 10 marks]
 - a) It takes 12 hours to drain a storage tank by opening the valve at the bottom. The depth 'y' of fluid in the tank 't' hours after the valve is opened is given by $y = 6 \left(1 \frac{t}{12}\right)^2$ metres.
 - Show ,with full working out , the rate $\frac{dy}{dt}$ m/hour at which the tank is draining at time t is $\frac{t}{12}-1$

- ii) a) When is the fluid in the tank falling fastest and slowest?
 - b) What are the values of $\frac{dy}{dt}$ at these times?

b) If the volume of a cylinder is given by V = $2\pi r^3$, find the approximate percentage change in V when r changes by $\frac{1}{2}$ %.

3. [1,3 = 4 marks]

A table has a radius of 50 cm and a height of 80 cm.

A light (L) is lowered vertically downwards from a point above the centre of the table at a constant rate of 0.2 cm per second.

When the light is h cm above the table it casts a shadow that extends r cm from the edge of the table.

a) Show that
$$r = \frac{4000}{h}$$

b) Find the rate at which r is changing when h = 60

4. [5 marks]

The area of a triangle can be found by the formula : Area = $\frac{ab \, Sin \, C}{2}$

Using the incremental formula, determine the approximate change in area (to 3 decimal places) of an equilateral triangle with each side of 10 cm, when each side increases by 0.1cm.

[Hint : Use exact value for 60°]

5. [3,2,3 = 8 marks]

An animal drinking trough is constructed from stainless steel in the shape of a trapezoidal prism, with height 'h' metres and length of 1 metre.

The cross section of the prism is an isosceles trapezium with acute angle of 45° , base 'b' metres and area of $60~\text{m}^2$.

a) Show that
$$b = \frac{60}{h} - h$$

b) Show that the surface area 'A' in m² is : A =
$$\frac{60}{h}$$
 - h + 2h $\sqrt{2}$ + 120

c)	Find the depth of the drinking trough to the nearest mm, if the amount of sta steel is to be kept to a minimum. Justify your answer by using Calculus techni	

End of Test